Paper Code & Title: S-101- Matrix Theory & Complex Analysis

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Matrix Theory: Linear transformation, Matrix representation	of	linear	14
	transformation, Similar transformation, Echelon matrix, Singular & No	on-si	ngular	
	transformation, rank of matrix, Diagonalisation of matrices, Character	istic	s roots	
	& Characteristics vectors, Special Theorem, Quadratic form & their	redu	ctions.	
	Simultaneous reduction of two quadratic forms. Cayley Hamilton theorem	n, Ti	race &	
	Transpose of Linear transformation, Jacobian's Lemma, Sylester	: La	aw of	
	Hermition transformation, Unitary & Normal transformation.			
II	Complex Number: Definition, Modulus, Argument, Geometrical repr	resen	tation,	14
	Vector representation, Conjugate Complex number. Analytic Function	on: 1	Limits,	
	Continuity, Convergence, Differentiality in extended complex plane, The	e nec	essary	
	& Sufficient condition for f(z) to be analytic, Regular function, Analyti	c Fu	nction	
	, Cauchy Rieman equations.			
III	Conformal Transformation: Transformation, Conformal transform	atior	n, The	14
	necessary & Sufficient condition for f(z) to represent. Conformal Mapp	ing,	Some	
	elementary transformation. Complex Integration: Definition, Red	ducti	on of	
	complex to real integer, Cauchy Fundamental theorem, Cauchy Integra	al Fo	rmula,	
	Poission's Formula, Cauchy Inequality, Liouville's theorem, Power series	s, Ta	ylor &	
	Laurent 's theorem. Calculus of residues: Residue at Simple Pole, residu	ie at	a pole	
	of order greater than unity, residue at infinity, cauchy's residue theorem.		-	

- 1. Biswas, S. : Topics in Algebra of Matrix.
- 2. J.N.Sharma : Fundamental of a complex variable
- 3. E.T.Copson :Complex Analysis
- 4. W.Rudin : Real & Complex Analysis
- 5. R.A.Silverman : Introduction Complex Analysis

Paper Code & Title: S-102- Probability Theory and Probability Distribution

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Concept of Probability: Different definition. Classical or Empirical or	Stati	stical	14
	definitions of probability, Axiomatic definition of probability, Fundame	ental	rules	
	of probability for composite events, Combinational, Baye's	The	orem.	
	Independent of events. Random variables (r.v.). Discrete and Continuou	is ra	ndom	
	variables. Probability Distribution of Random variables, Exp	ecta	ation.	
	Properties of Expectation. Moments, Central Moments, Ordinary I	Mon	nents.	
	Chebyshev's Inequality, Moment's Inequalities involving Beta Coefficie	ents.		
II	Moments Generating Function (m.g.f). Properties of	m.	g.f.,	14
	Probability generating function(p.g.f.), Characteristic Function (c,f)	of a	
	random Variables, Properties of c.f., transformation of random V	aria	bles,	
	Marginal and Conditional Distributions. Correlation and Regression	anal	ysis,	
	Multiple correlation coefficients, Partial correlation coefficient.			
III	Basic Probability Distribution: Uniform Distribution, Poisson Dis	trib	ution,	14
	Geometric Distribution, Negative Binomial and Multinormal Distribution	ibut	tions,	
	Rectangular. Normal, Beta, Cauchy, Laplace, Exponentional Dis	tribu	itions	
	and their properties, m.g.f., p.g.f., c.f., and Recurrence relation for Mor	nent	s and	
	problems based on them.			

- 1. Goon Gupta & Das Gupta : An Outline of Statistical theory Vol. II
- 2. Meyers Paul: An Introduction to Probability Theory Vol. I Second Edition
- 3. Feller W.: An Introduction to Probability Theory Vol. I Second Edition

Paper Code & Title: S-103- Statistical Methodology

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Limit Theorem. Central Limit Theorem (C.L.T.), and Lindberg Levy f	rom	CLT,	14
	Chebyshev's Inequality.			
II	Chi-Square distribution, Chi-Square Goodness of Fit, Application of	Chi-S	Square	14
	distribution, Recurrence relation for moments of Chi-Square, Properties of	Chi-S	quare	
	distribution, Students t-distribution, Application of t-distribution, F-distribution	ution	, Inter	
	relationship between Chi-Square, t and F-distributions, Properties of F-distri	butio	n.	
III	Sampling distribution of Mean and Variance, Sampling distribution of	of Sa	ample	14
	Correlation when population coefficient when population correlation co	beffic	ient p	
	$(p=0)$ Equal to zero. Order Statistics, Distribution of $X_{(t)}R^{ui}$ Order distribution	of sn	nallest	
	Order Statistics $X(1)$, Distribution of largest Order Statistics.			

- 1. Goon Gupta & Das Gupta : An Out Line of Statistical Theory Vol. -- I
- 2. Spiegel, MA. : Theory and Problems of Probability and Statistical (Schaum's Outline Series)
- 3. Hogg & Craig : An Introduction to Theory of Statistics
- 4. Mood and Grabill : An Introduction to Theory of Statistics
- 5. David : Order Statistics (John Wiley Publication)

Paper Code & Title: S-104- Measure Theory and Analysis

Credits	Point: 4		Т	Р
	3	}	1	0
Unit	Contents			Contact
				Hours
Ι	Basic Concept of Sets, measure, Measurable Sets, Lebesgue Measure o	f a	Set,	14
	exterior & Interior measure, measurable space, measurable functions, eq	uiv	valent	
	function, Simple Function,			
II	Lebesgue Measurable functions, Characteristic function, Lebesgue integ	gra	l of a	14
	function ,first mean value theorem, conversions of measure,	Un	iform	
	Convergence, Reisz Theorem, D.F.Egor's Theorem,			
III	Extension of a measure, Continuous & absolute continuous function, in	nde	finite	14
	integral differential function, increasing & decreasing function, fun-	ctio	on of	
	bounded variation.			

- 1. Measure theory by P. R. Halmos 2. Measure Theory by K. P. Gupta

Paper Code & Title: S-105- Computer Fundamental & 'C' Language Credits Point: 4 LT

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Number System, Boolean algebra, Basic concept of computer Organiz	ation	Flow	14
	Chart, Algorithm, Basics of Operating System (DOS, Windows, U	NIX). 'C'	
	Language: Introduction to algorithms, Flow Charts, Tracing Flo	w C	harts,	
	Problem solving method need for computer language. Reading progra	ms w	ritten	
	in C language. C character set, Identifies and Keywords.			
II	Data types, Declarations, Expression, Statement and Symbolic Consta	nts, 1	Input-	14
	Output: getchar, putchar, scanf, printf, gets, puts, functions, Pre	-Pro	cessor	
	Command: # include. main. preparing and running a C program.			
III	Operators & Expressions: Arithmetic. Unary and Logical, Bitwise, A	ssig	nment	14
	and Conditional operator, Library functions. Control statements. W	Vhile	, Do-	
	While, For Statement, Nested loops. if else, switch, Multi Dimension	nal A	rrays,	
	Structure, Pointers: Declaration, Passing to a function, Operation's of	n poi	nters,	
	Data & Files.			

- Computer Fundamental by D.P. Nagpal
 Programming in 'C' by R. Hutchison
 Computer Programming in 'C' by V. Rajaram

Paper Code & Title: S-201- Statistical Inference

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Parameter and Statistics. Estimator and Estimate, Criteria for a good	Estir	nator,	14
	Consistency. Sufficency condition for Consistency, Properties of	Cons	istent	
	Estimator and problem based or consistency, Unbiasedness, Minimur	n Va	iance	
	Unbiased Estimator (MVUE), Efficiencg Theorem on MVU estimat	or, C	ramer	
	Rao's Inequality, Condition for equality C-R			
II	Minimum variance Bound Estimator (MVB Estimator) and problem	n bas	ed on	14
	C-R inequali4j, Sufficiency - Fisher's Neyman Theorem, Factorizatio	n The	eorem	
	and problem on Sufficiency Completeness, Complete Sufficient Stati	stics,	Rao-	
	Blackwell Theorem, Lehman Scefret6 theorem, Problem based on	n Co	mpete	
	ness, Method of Estimation, Method of Maximum Likelihood(MLE),	Prop	erties	
	of Maximum Likelihood Estimator and their proof, Methodo,J	Mor	nents,	
	Method of Least Square, Method of Minimum Chi-Square and Mo	dified	l Chi-	
	Squ?re., Interval Estimation. Confidence Interval and Confidence Coe	fficie	nt.	
III	Testing Of Hypothesis. Sample and Composite Hypothesis, Critic	al Ro	egion,	14
	Two- kinds of error, Type I error and type!, error, Probability of type	I erro	or and	
	Type II error, Power of a Test, Most Powerful critical region or Be	est C	ritical	
	Region (B.C.R.), Uniformly Most Powerful critical Region (U.M.P. 1	. Ney	mccri	
	Pearson Lemma, Unbiased Test, Uniformly Most Powerful Unbia	sed 7	Fest (
	U.M.P.U)			

- 1. Goon Gupta & Das Gupta : An Outline of Statistical Theory Vol. II
- Hogg & Craig : Introduction to Mathematical Statistics
 Kendall & Stuart : Advance Theory of Statistics Vol. II
 Wilks, S.S. : Mathematical Stastistics
- 5. Cramer II : Mathematical Statistics
- 6. Lehman : Testing of Statistical Hypothesis

Paper Code & Title: S-202- Sampling Technique

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact Hours
I	'Distinction between census and sample survey, Advantage of methods, Role of sampling theory, Probability sampling. Bias and sample frame and sampling fraction. Sampling and non-sampli Sampling random sampling with and without replacement tec- selection a sample random sample, Notation and terminology, Est population total and population Mean, Variance and standard err estimation.	sam its ef ng e hniqu imati- ror o	pling ffects, errors. ie of on of f the	14
II	 Stratified Sampling: Introduction. Definition of strata. Printstratification, and uses of Stratified Sampling, Stratified Random Notation and Terminology. Estimation of population total population variance and standard error of the estimation,. Allocation of sampling (a) Equal allocation (b) Proportion allocation (c) Nernan allocation or optimization allocation Variance of the effort the above cases. Systematic Sampling: Introduction and definition. Estim population total and population mean, Variance and standard error estimates. Comparison of systematic sampling and simple random without replacement (SRSWOR), Systematic sampling vs. Stratified sampling vs. 	ncipa Samj tion r size. estima atior ror o n san pling	l of pling. mean. ation of of of the ppling	14
III	Ratio Method of Estimation : Ratio estimate, Expected value of estimate, First and Second approximation to the expected value of th Variance of the Ratio Estimate, An optimum property of the Ratio Efficiency of the Ratio Estimate, Ratio Estimate in Stratified sam two-phase or double sampling, Sampling with varying probabilit Estimate and its variance. Regression Method of Estimation Regression Estimation, Expected Value of the Regression estimate, V the Simple Regression Estimate, Conditions Under which the Simple Estimate is Optimum, Comparison of Simple Regression Estimate Estimate and the Simple Unbiased Estimate, Comparison of Simple Estimate with Stratified Sampling, Double Sampling, Cluster Efficiency of Cluster Sampling, Efficiency of Cluster Sampling in Intra Class Correlation Equal Cluster and Unequal cluster, Sub - San Two - Stage Sampling.	f the e esti pling, ties - : S /arian Regra with Regra Samp n tern nplin	ratio mate, mate, The Ratio imple nce of ession Ratio ession oling, ms of g and	14

Paper Code & Title: S-203- Computer Oriented Numerical Analysis

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact Hours
Ι	Computer of Algebraic and Transcendental Equation: Bisection Iterative method Method of False Position, Netwon Raphson Method Method and their Rate of Convergence. Muller Method. Giraffe's Roo Method. Lin- Baristow's Method. Program Algorithms for False Secant, Bisection, Newton Raphson Methods. Interpolation: Finite of Forward backward and Central difference, Symbolic relation and sep symbols. Factorial notations differences of a Polynomials, Newton for interpolation, Central difference formulae, Stiriling's formula, Bessel's formula, Interpolation with Cubic Splines Derivation of the governing and condiations. Programs and Algorithms for Lagranges Method Interpolation.	M od. S Po diffe parat rmul Her equ l. N	ethod. Secant uaring sition. rence. ion of ae for mite's ations ewton	14
II	Curve Fitting: Least Square curve fitting a straight. Nonlinear cur Approximation of functions, Chebyshev Polynomials, Economization Series, Linear Difference equation Homogenous linear equation with coefficient. Programs and algorithms for Least Square method. Integration: Maximum & Minimum values of tabulated functions. T rule, Simpsons 1/3, 3/8 Rule. Weddle's rule. Newton Cotes Integration Legendre formulae. Lobatto Integration method. Programs and algo Trapezoidal rule, Simpsons rule.	ve f of h h co Num rape forr rithr	itting, Power nstant nerical zoidal nulae. ns for	14
III	Numerical Solution of Ordinary Differential Equations: Solution by series, Picard's method, Euler's method. Modified Eluer's method method, Runge-Kutta Forth order method. Predictor Corrector method method finite difference method Simultaneous & Higher Order Programs and algorithms Picard's method. Euler's method, Modifi- method, Runge method Runge-Kutta fourth order method.	y Ta od, 1 . Mil equ ed H	aylor's Runge Iliness Iation. Euler's	14

- Numerical Analysis by S.S. Sastry
 Numerical Method by Iyenger Jain
 Computer Oriented Numerical Method by Balguruswamy

Paper Code & Title: S-204- Design of Experiments & Linear Estimation

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Linear models of full rank and not full rank. Estimable functions, Le	ast s	quare	14
	and Generalized Least square Method of Estimation, Gauss Markoff	The	orem,	
	Analysis of variable in One — Way and Two — Way classification	n wit	h one	
	observations as well as equal observations in each cell.			
II	Design of experiments, Principals of design of Experiments, Rand	omis	sation,	14
	Replication, Local Control, Completely Randomised Design	(CRD),	
	Randomised Block Design (RBD), Latin Square Design (LSD).			
III	Missing Plot Analysis, Balanced Incomplete Block Design	(B	IBD),	14
	Relationship between parameter of BIBD, Efficiency of BIBD with	resp	ect to	
	RBD, Factorial Design 2^3 and 2^n factorial Design of Experiment, Con	nfou	nding:	
	Partial Confounding in 2 ³ factorial Experiment (only), Analysis of Co	o-va	riance	
	with one concomitant variable and analysis of co-variance in RBD.	Spl	it Plot	
	Design.			

References:

1. Das & Giri: Design, Analysis of Experiments

- 2. Goon. Gupta & Das Gupta: Fundamental of Statistics, Vol. II
- 3. Fisher: Design of Experiments
- 4. Goon, Gupta & Das Gupta: An Outline of Statistical Theory Vol. II
- 5. Cochran & Cox: Experimental Designing
- 6. Sceffe's: Analysis of Variance
- 7. Fefferer: Experimental Design Theory analysis

Paper Code & Title: S-205- Industrial Statistics

Credits	Point: 4 L T	Р
	3 1	0
Unit	Contents	Contact
		Hours
Ι	Time series and its Components. Secular trend. Seasonal Variation, Cyclic	14
	Variation and irregular Variation & measurement of trend, method of Semi-moving	
	average, Method of Curve Fitting by Least Square Principal, Fitting of Straight line	
	Second Degree Polynomial, Experiment Curve.	
II	Statistical Quality Control- process and Product Control chart for mean. Range,	14
	Standard deviation. Fraction Defective and Number of Defects.	
III	Single Sampling Plan. Double Sampling Plan. SPRT, OC function of SPRT	14
	and ASN of Sequential Sampling Plan.	
	Index Number — Introduction	

- Goon Gupta & Das Gupta: Fundamental of statistics. Vol. II
 Gupta. S. C. & Kapoor, V .K.: Applied Statistics

Paper Code & Title: S-301- Advance Statistical Inference

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Testing of Hypothesis: Test of Statistical Hypothesis Critical region	n. Er	ror of	14
	type I and Type Level of significance. Optimum tests in different situ	ation	s. MP	
	and UMP critical regions, Unbiased Test, UPM critical region. MP	and	UPM	
	regions in a random sampling from a Normal Distribution. Type A r	egior	is and	
	Type A ₁ regions . Optimum regions and Sufficient Statistics, Rando	mize	l test.	
	Composite Hypothesis and similar regions. Similar regions and	con	nplete	
	sufficient statistics, Construction of most powerful similar region	s. Te	st for	
	the mean of a normal distribution, Test for the variance of	a n	ormal	
	distribution. Monotonicity of power functions, Consistency.	Invar	iance,	
	Likelihood — Ratio Test.			
II	Sequential Analysis: Two aspects of a Sequential procedure. S	Sequ	ential	14
	testing OT Hypothesis, Wald's SPRT, determination of A and B. Sc	me r	esults	
	about the Sample Number n, OC function of SPRT test for a	Com	posite	
	Hypothesis. Sequential estimation, Stein's — two stage sampling	. No	on —	
	parametric Inference: Chi-square test of goodness of fit, Kolme	ogoro	ov —	
	Smirnov one sample test, Comparison of $x,^2$ — test and KS test, one s	samp	le and	
	paired sample problems, The ordinary sign test, The Wilcoxon signed	d ran	k test.	
	Wilcoxon paired sample signed rank test, Comparison of the sig	n tes	and	
	Wilcoxon paried sample signed rank test, Two sample problems,	Wa	ld —	
	Walfowitz run test. Wolmogorov — Simirnov two sample tests	S. M	ann -	
	Whitney U test. Rank tests. Rank test for location. Rank test for dispe	ersion	n. The	
	Co-sample problem, Distribution free confidence intervals and tolerand	ce int	erval.	
	Elements of Decision Theory: Some basics concepts. Decisi	on s	pace.	14
	Decision function or decision rule, Admissibility. Minimax app	roac	h and	
	Baye's approach, Structure of Baye's rule, Complete class	of 1	ules.	
	construction of minimax rules. Least favorable rules, point esti	inati	un as	
	a decision problem, Quadratic loss function. Squared -6	error	1088	
	runction, Adsolute error function Hypothesis testing as a		1510n	
	problem, interval estimation as decision problem. Confidence	e Int	erval	
	and Confidence Coefficient. A simple method of obtaining c	onfic	ience	
	limits Confidence belt, A more general method of obtaining c	onn	ience	
	minus, shortest confidence intervals, Theory of confidence sets.			

- Out Line of Statistical Theory Goon , Das & Gupta
 Mathematical Statistics S.C. Gupta & V.K. Kapoor.

Paper Code & Title: S-302- Operation Research

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Definition & Scope of Operation Research. Different types of mode	ls &	their	14
	constriction. Linear Programming: Convex Sets. Graphical method	. Sii	nplex	
	method, Revised Simplex method,			
II	Duality theory, Dual Simplex method, Sensitivity analysis, Multi of	oject	ive &	14
	Goal Programming, Solutions user graphical & Simplex method.			
III	Integer Programming: Cutting plan, Branch & Bound techniques for all	integ	ger, or	14
	mixed programming Algorithms for $0 - 1$, Traveling alesman & Car	go la	oading	
	problems. Transportation Problem: Processing of jobs thought machine	s. Cl	PM &	
	PERT.			

- 1. Operations Research S.D.Sharma
- 2. Operations Research J.K.Sharma
- 3. Operations Research Ravindran, Phillips Adberg
- 4. Introduction of Operations Research F.S.Hiller & G.J.Liberman
- 5. Operations Research H.A.Taha

Paper Code & Title: S-303- Stochastic Process

Credits Point: 4		Р
	3 1	0
Unit	Contents	Contact
		Hours
Ι	Introduction to stochastic processes: Classification of according to state	14
	space and time domain, Countable state Markov chains, Chapman-	
	Kolmogorov equations; calculation of n-step transition probability and its	
	limit, Stationary distribution, classification of states of Markov chains.	
II	Discrete state space continuous time MC: Kolmogorov-Feller differential	14
	equations, Poisson process, birth process, Death process, birth and death	
	process.	
	Random walk and gambler's ruin problem. Wiener process as a limit of	
	random walk, Differential equation and first passage time distribution.	
	Renewal theory: Renewal function, renewal equation, Elementary renewal	
	theorem and applications, Statement and uses of key renewal theorem, study of	
	residual life time to a fixed point.	
III	Branching process: Galton-Watson branching process, probability of ultimate	14
	extinction, distribution of total number of progeny, Martingale in discrete	
	time queueing theory: queueing models, differential equation of distribution	
	of birth –death process, M/M/1 queue, M/M/s queue.	

- 1. Adke, S. R. and Manjunath, S. M. (1984): An Introduction to Finite Markov Processes, Willey Eastern.
- 2. Bharat, B. R. (2000): Stochastic Models: Analysis and Applications, New Age International, India.
- 3. Cinlar, E. (1975): Introduction to Stochastic Processes, Prentice Hall.
- 4. Feller, W. (1968): Introduction to Probability and its Applications, Vol. 1, Wiley Eastern.
- 5. Harris, T. E. (1963): The Theory of Branching Processes, Springer-Verlag.
- 6. Hoel, P. G., Port, S. C. and Stone, C. J. (1972): Introduction to Stochastic Processes, Houghton Miffin & Co.
- 7. Jagers, P. (1974): Branching Processes with Biological Applications, Wiley.
- 8. Karlin, S. and Taylor, H. M. (1975): A First Course in Stochastic Processes, Vol. 1, Academic Press.
- 9. Medhi, J. (1982): Stochastic Processes, Wiley Eastern.
- 10. Parzen, E. (1962): Stochastic Processes, Holden-Day.
- 11. Srinivasan, S. K. and Mehata, K. M.: Stochastic processes

Paper Code & Title: S-304- Econometrics and Demand Analysis

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Nature of econometrics, Linear regression model, assumptions, esti	mati	on of	14
	parameters by least squares and maximum likelihood method	s, te	est of	
	hypothesis and confidence estimation for regression coefficients	, R ²	² and	
	adjusted R^2 , Use of extraneous information in terms of exact and	stoc	hastic	
	linear restrictions, restricted restriction and mixed regression methods	and	their	
	properties, point and interval predictors.			
II	Tests for structural change, use of dummy variables, pro-	obler	n of	14
	multicollinearity, consequences and solutions, estimation of parat	nete	rs by	
	Generalized least squares in models with non spherical di	sturb	ances	
	Hetroscedasticity of disturbances, estimation under hetroscedast	cicity	and	
	test for hetroscedasticity.			
III	Autocorrelation, Durban- Watson test, Estimation under auto	corr	elated	14
	disturbances Errors in variables model, inconsistency of least square	es m	ethod	
	Instrumental variable method.			
	Demand and Supply curve, price-elasticity of demand, partial elasticity	of		
	demand.			

- 1. Apte P. G. (1990); Text book of Econometrics. Tata McGraw Hill
- 2. Cramer, J. S. (1971): Empirical Econometrics, North Holland.
- 3. Gujarathi, D. (1979): Basic Econometrics, McGraw Hill.
- 4. Intrulligator, M. D. (1980): Econometric models Techniques and applications, Prentice Hall of India.
- 5. Johnston, J. (1984): Econometric methods, Third edition, McGraw Hill.
- 6. Klein, L. R. (1962): An introduction to Econometrics, Prentice Hall of India.
- 7. Koutsoyiannis, A. (1979): Theory of Econometrics, Macmillan Press.
- 8. Malinvaud, E (1966): Statistical methods of Econometrics, North Holland.
- 9. Srivastava, V. K and Giles D. A. E. (1987): Seemingly unrelated regression equations models, Maicel Dekker.
- 10. Theil, H. (1982): Introduction to the theory and practice of Econometrics, John Wiley.
- 11. Walters, A (1970): An introduction to Econometrics, McMillan & Co.
- 12. Wetherill, G. B. (1986): Regression analysis with applications, Chapman Hall.
- 13. Gupta S C & Kapoor V K; Applied Statistics.

Paper Code & Title: S-401- Multivariate Analysis

Credits	Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact
				Hours
Ι	Multivariate Normal Distribution (MND), Characteristic fu	inctio	n of	14
	MND. Marginal and Conditional Distribution, Estimation of Mo	ean V	ector	
	and Covariance Matrix, Partial and Multiple Correlation Coef	ficien	and	
	Their Estimation in a Sample from Multivariate Normal Distribution	on.		
II	Wishart Distribution and its reproductive property and their	prope	rties.	14
	Concept of generalized variance.			
III	Hotelling's T ² -Distribution, Motivation and Derivation and its	s opti	mum	14
	properties, Mohalanobis. D^2 -tests of independence, Wilk's Criterior	1.		

- 1. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis and Edition (Wliey Sries in Probability & Mathematical Statistics)
- 2. Kshiusagar, A.M.: Multivariate Analysis (Matcell Dokker INC. New York)
- 3. Kahtri. C.G.: Multivariate Analysis
- 4. Dillon. W.R. & Goldstein, M.: Multivariate Analysis Method and its Application (Wiley Series in Probability & Mathematical Statistics).

Paper Code & Title: S-402- Biostatistics & survival Analysis

Credits	s Point: 4	L	Т	Р
		3	1	0
Unit	Contents			Contact Hours
Ι	Techniques of Demography Analysis- Mortality			14
	Indices of mortality measure, Crude Death Rate, Age-Specific death ra	ıte,	Infant	
	Mortality Rate, Neonatal and Prenatal mortality rate, Standardiz	zatio	on of	
	Mortality Rate, Direct method and Indirect method of Standardizat	ion	, Life	
	table, Relationship between life table function, relationship between	q_x	& M _x	
	relationship between $q_x \& \mu_{x_1}$ relationship between $m_x \& \mu_x$ relating here m_x relationship between m_x relationship b	latic	onship	
	between $\epsilon_x^0 \& \epsilon_{x+1}^0$, Relationship between $\mu_x \& \epsilon_x^0$ Relationship	be	tween	
	complete and curtailed expectation of life. Abridged life table,	Gre	ville's	
	formula between abridged life table function $_{n}m_{x} \& _{n}q_{x}$, Greville's fo	rmu	ila for	
	construction of an abridged life table, Reed and merrelle's formula pr	obl	em of	
	construction of abridged life table. King's method of construction of a	Abi	idged	
	Life table, Sampling distribution of life table function, Estimation of	t su	rvival	
тт	probability p_i by the method of maximum likelihood.		~~~~~	14
11	CBP GEP Age Specific Fertility Pate TEP GPP & NPP Pate	nea lotic	sures,	14
	between Crude Birth Rate (CBR) General Fertility Rate (GFR)	and	Total	
	Fertility Rate (TFR)	ina	Total	
	Competing Risk Theory, measurement of competing risks. Hazard ra	ate.	crude	
	probability $(O_{i\delta})$. Net probability type A $(q_{i\delta})$. Net probability type	: B	$(\mathbf{q}_{i\delta}).$	
	Partial Crude Probability $(Q_{i\delta \varepsilon})\delta \neq \varepsilon$. Inter-relation of the probabilities ($\mathbf{y}_{i\delta}$	$q_{i\delta}, q_i$	
	$_{\delta}, Q_{i\delta, \varepsilon}$ Relationship between crude probability and Net-probability	' ty	pe-A,	
	Relationship between Net probability type-B $(q_{i,\delta})$ and crude probability	lity	$(Q_{i\delta}),$	
	Relationship between partially Crude probability($Q_{i\delta,\epsilon}$) and crude pr	oba	bility,	
	Estimation of crude, Net and partially crude probability Neyman's mod	lifie	$d X^2$ -	
	method, Estimation of partially crude probability (Qiδ.ε).			
III	Concept of time, order and random censoring, likelihood	in	the	14
	distributions – exponential, gamma, Weibull, lognormal an	d l	Pareto	
	distributions.		<i>.</i>	
	Life tables, failure rate, mean residual life and their elementary p	rop	erties,	
	Ageing classes and their properties, Bathtub failure rate.		Malan	
	estimation of survival function – actuarial estimator, Kapian	- . ha	twoon	
	parametric and non-parametric estimates. Total time on test	i de	iweell	
	Two sample problem -log rank test and Gehan test. Semi-parametric t	eor	ession	
	for failure rate – Cox's proportional hazards model with one and	$\frac{1}{1}$ s	everal	
	covariates. Likelihood Ratio (LR) test for the regression coefficient	- 5	e, erui	

Paper Code & Title: S-403- Advanced Design of Experiment

Credits Point: 4		

L	Т	Р
3	1	0

Unit	Contents	
		Hours
Ι	Partially balanced incomplete block designs. Resolvable and affine resolvable	14
	designs. Dual and linked block designs. Lattice Designs. Construction of PBIB	
	designs. Cross-over designs. General	
II	Theory of Fractional Factorial Experiments. Optimal designs- Various	14
	optimality criteria. Symmetric and asymmetric orthogonal arrays and their	
	constructions.	
III	Robust Parameter designs. Response surface designs- orthogonality, rotatability	14
	and blocking. Weighing designs. Mixture Experiments.	

- 1. Chakrabarti, M.C. (1962). Mathematics of Design and Analysis of experiments, Asia Publishing House.
- 2. Cornell, John A. (2002). Experiments with Mixtures, John Wiley & Sons.
- 3. Das, M. N. and Giri, N. C. (1986). Design and Analysis of Experiments, Wiley Eastern Limited.
- 4. Dey, A. (1986). Theory of Block Designs, John Wiley & Sons.
- 5. Dey, A. and Mukerjee, R. (1999). Fractional Factorial Plans, John Wiley & Sons.
- 6. Hedayat, A. S., Sloane, N. J.A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications, Springer.
- 7. Hinkelmann, K. and Kempthorne, O. (2005). Design and Analysis of Experiments, Vol. 2: Advanced Experimental Design, John Wiley & Sons.
- 8. Jones, B. and Kenward, M.G. (2003). Design and Analysis of Cross-over Trials. Chapman & Hall/CRC Press.
- 9. Montgomery, D. C. (2005). Design and Analysis of Experiments, Sixth Edition, John Wiley & Sons.
- 10. Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology: Process and Product Optimization using Designed Experiments, John Wiley & Sons.
- 11. Raghavarao, D. (1970). Construction and Combinatorial Problems in Design of Experiments, John Wiley & Sons.
- 12. Wu, C. F. J. and Hamada, M. (2000). Experiments: Planning, Analysis and Parameter Design Optimization, John Wiley & Sons.

Paper Code & Title: S-404- Bayesian Inference

Credits	Point: 4	L	Т	Р
_		3	1	0
Unit	Contents			Contact
				Hours
Ι	Subjective interpretation of probability in terms of fair odds, Bayes th	eore	m and	14
	computation of the posterior distribution, Natural conjugate family	of p	oriors,	
	Hyper parameters of a prior from conjugate family, Conjugate fan	nily f	for (i)	
	exponential family models (ii) models admitting sufficient statistics	s for	fixed	
	dimension, Non informative, improper and invariant priors. Jeffery's p	rior.		
II	Bayesian decision theory: Bayes solutions for practical decision	prot	olems,	14
	Bayesian point estimation as a prediction problem from posterior d	istrib	ution,	
	Bayes estimators for (i) absolute error loss (ii) squared error loss (iii) 0 -1	l loss.	
	Generalization to convex loss functions, Evaluation of the estimates in	n the	terms	
	of the posterior risks.			
III	Bayesian interval estimation: credible intervals, highest poster	ior d	ensity	14
	regions, Interpretation of the confidence coefficient of an interva-	al ar	nd its	
	comparison with the interpretation of the confidence coefficiency	cient	for a	
	classical confidence interval.			
	Bayesian testing Hypothesis : Specification of the appropriate from	om o	of the	
	prior distribution for a Bayesian testing of hypothesis problem, H	Prior	odds,	
	Posterior odds, Bayes factor for various types of testing problems	depe	nding	
	upon weather the null hypothesis and alternative hypothesis are	sim	ole or	
	composite, Specification of the Bayes test in above cases. Dis	cussi	on of	
	Lindley's paradox for testing a point hypothesis for normal mean agai	nst th	e two	
	sided alternative hypothesis.			

- 1. Berger, J. O.: Statistical Decision Theory and Bayesian Analysis, Springer Verlag.
- 2. Robert, C. P. and Casella, G.: Monte Carlo Statistical Methods, Springer Verlag.
- 3. Leonard, T. and Hsu, J. S. J.: Bayesian Methods, Cambridge University Press.
- 4. Bernando, J. M. and Smith, A. F. M.: Bayesian Theory, John Wiley and Sons.
- 5. Robert, C. P.: The Bayesian Choice: A Decision Theoretic Motivation, Springer.
- 6. Gemerman, D.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman Hall.
- 7. Box, G. P. and Tiao, G. C.: Bayesian Inference in Statistical Analysis, Addison-Wesley.